Buceo en Júpiter

Jupiter Diving
Créditos de imagen: NASA, JPL-Caltech, SwRI, MSSS,Gerald Eichstadt, Justin Cowart


Ahí está la simulación de un chapuzón buceando en la atmósfera superior de Júpiter, el gigante de gas del Sistema Solar. La impresionante animación se basa en datos de imágenes de la JunoCam y del radiómetro de microondas que hay a bordo de la sonda Juno en órbita de Júpiter. La visualización comienza a unos 3.000 kilómetros por encima de las nubes jovianas del sur; se puede seguir el progreso en la barra de la izquierda. La zambullida es el lugar de la famosa Gran Mancha Roja de Júpiter; a medida que disminuye la altitud, aumenta la temperatura. Los datos de la Juno indican que la Gran Mancha Roja, el sistema de tormentas más grande del Sistema Solar, penetra unos 300 kilómetros en la atmósfera del planeta gigante. A modo de comparación, el punto más hondo de los océanos de la Tierra está a unos 11 kilómetros de profundidad.

Apoya Observatorio

Observatorio lleva más de 23 años (desde 1995) divulgando la ciencia en español traduciendo día a día ininterrumpidamente el servicio de la imagen del día de la NASA. Soportamos más de 15.000 visitas diarías. Al igual que hace la Wikipedia, te pedimos tu colaboración para poder seguir sirviendo esta web cada día. ¡Gracias!

Imagenes relacionadas

Comenta, pregunta, comparte ...

  • Sa Ji Tario

    Bucear en esa tormenta es una utopía, los 400 km de velocidad de los vientos despedazaría a cualquier nadador de la Tierra, pero peor sería en Saturno con vientos de 1600 km, o en Neptuno con velocidades de 2.000 km. Los barcos a vela allí superarían con creces a los más veloces misiles fabricados por el hombre y los peces vela no nadarían, puesto que volar es más económico, las aves solo planearían y si la superficie fuera sólida no habría vegetación, si lloviera sería horizontal y por la temperatura muy baja el agua se convertiría en granizo con poder de destrucción mayor a un howitzer

  • Sa Ji Tario

    Una guardería estelar que florece ante nuestros ojos
    13 de Diciembre de 2017

    La cámara OmegaCAM, instalada en el telescopio de rastreo del VLT de ESO, captó esta brillante visión de la guardería estelar llamada Sharpless 29. En esta imagen gigante pueden apreciarse muchos fenómenos astronómicos, incluyendo polvo cósmico y nubes de gas que reflejan, absorben y reemiten la luz de estrellas jóvenes calientes del interior de la nebulosa.

    La región del cielo captada en la foto aparece en el catálogo Sharpless de regiones H II: nubes interestelares de gas ionizado, plagado de estrellas en formación. También conocido como Sh 2-29, Sharpless 29 se encuentra a unos 5500 años luz de distancia, en la constelación de Sagitario (el arquero), al lado de la nebulosa de la Laguna, más grande. Contiene muchas maravillas astronómicas, incluyendo la región de gran actividad de formación estelar NGC 6559, la nebulosa del centro de la imagen.

    Esta nebulosa central es la característica más llamativa de Sharpless 29. Aunque tiene pocos años luz de tamaño, muestra los estragos que pueden causar las estrellas cuando se forman dentro de una nube interestelar. Las calientes estrellas jóvenes de esta imagen no tienen más de dos millones de años de edad y lanzan flujos de radiación de alta energía. Esta energía calienta el polvo circundante y el gas, mientras que sus vientos estelares erosionan y esculpen de forma espectacular su lugar de nacimiento. De hecho, la nebulosa contiene una prominente cavidad que fue labrada por un sistema energético de estrella binaria. Esta cavidad es expansión hace que el material interestelar se acumule y cree el borde rojizo en forma de arco.

    Cuando el polvo interestelar y el gas son bombardeados con la luz ultravioleta de las estrellas jóvenes calientes, la energía hace que brillan intensamente. El difuso resplandor rojo que impregna esta imagen proviene de la emisión de gas de hidrógeno, mientras que la luz azul brillante es causada por la reflexión y la dispersión de pequeñas partículas de polvo. Igual que la emisión y la reflexión, la absorción también aparece en esta región. Hay zonas de polvo que bloquean la luz que viaja hacia nosotros y nos impiden ver las estrellas detrás de él, así como pequeños tirabuzones de polvo que crean las estructuras en forma de filamentos oscuras del interior de las nubes.

    El entorno rico y diverso entorno de Sharpless 29 ofrece a los astrónomos una mezcla heterogénea de propiedades físicas para su estudio. La formación activa de estrellas, la influencia de las estrellas jóvenes sobre el polvo y el gas y la perturbación de campos magnéticos, todos estos fenómenos pueden observarse y examinarse en esta área.

    Pero las estrellas jóvenes masivas viven rápido y mueren jóvenes. Finalmente acabarán sus vidas explosivamente como supernovas, dejando tras de sí ricos residuos de gas y polvo. En decenas de millones de años, todo esto será arrastrado y solo quedará un cúmulo abierto de estrellas.

    Sharpless 29 se observó con la OmegaCAM de ESO, instalada en el telescopio de rastreo del VLT (VST) en Cerro Paranal, en Chile. OmegaCAM produce imágenes que cubren un área más de 300 veces mayor que el sensor con el campo de visión más grande, del Telescopio Espacial Hubble de NASA/ESA, y puede observar en una amplia gama de longitudes de onda, desde el ultravioleta a los infrarrojos. Su característica seña de identidad es su capacidad para captar la línea espectral muy roja del H-alpha, creado cuando el electrón de un átomo de hidrógeno pierde energía, algo que ocurre de manera intensa en una nebulosa como Sharpless 29.

    Información adicional
    ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el ELT (Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

    Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

    El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

El 14 de diciembre de otros años ...

 Visita el calendario

Meteoritos sobre Mongolia Interior
día anterior, miércoles, 13 de diciembre

  <     <     <       jueves, 14 de diciembre       >     >     >  
Gemínidas del norte
día siguiente, viernes, 15 de diciembre

Busca en Observatorio

o si tienes suerte ...

Saltar aleatoriamente a una de las 8171 fotos